WORK DYNAMICS
气体信号分子与生物自由基检测仪(WPI TBR4100):多维度生物医学研究助手
发布单位:
东莞市人民医院中心实验室
2025/5/26 14:42:20
74
图1 World Precision Instruments(WPI)TBR4100 四通道主机
与同类仪器的相比,WPI TBR4100具有以下优势:
1. 多通道高通量检测,提升实验效率
2. 微型化电极设计,实现无创在体监测
3. 高灵敏度与快速响应,保障数据可靠性
4. 广泛的应用场景覆盖
图2 通过TBR4100检测有害藻类(P. minimum, K. veneficum和G. instriatum)在暴露于灭藻剂IRI-160AA后细胞外H₂O₂的表达变化。
图3 通过TBR4100检测多硫化物(20mM)在没有过氧化氢酶(peroxidase: PS)或添加10、15和25mM过氧化氢酶后,H₂S浓度随时间的变化。
5. 模块化设计与技术支持
附录:更多研究案例及参考文献
国内外案例精选(基于WPI TBR4100应用方向)
文献名称 | 研究领域 | 发表期刊(发表年份) | 文章简介 |
《Activation of ATM/Akt/CREB/eNOS Signaling Axis by Aphidicolin Increases NO Production and Vessel Relaxation in Endothelial Cells and Rat Aortas》 |
心血管疾病 |
Biomolecules Therapeutics (Seoul) (2020)
|
利用TBR4100测量不同浓度和时间处理下的牛主动脉内皮细胞培养基中的NO水平。 |
《Salinity-induced accumulation of endogenous H₂S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana》 |
植物生理学 |
Plant Science (2017)
|
通过TBR4100检测不同盐浓度(0, 300 or 600 mM)处理的烟草植物内源性H₂S和NO浓度变化,证实其在盐胁迫中的关键信号作用。 |
《PDI-mediated S-nitrosylation of DRP1 facilitates DRP1-S616 phosphorylation and mitochondrial fission in CA1 neurons》 |
神经科学 |
Cell Death & Disease (2018)
|
实验动物被给予不同的处理(给予生理应激剂pilocarpine以诱导癫痫发作,或者给予L-NAME(一种NOS抑制剂),使用TBR4100测量NO浓度,以探索NO合成对实验结果的影响。) |
《Loss of OxyR reduces efficacy of oxygen respiration in Shewanella oneidensis》 |
呼吸代谢 |
Scientific Reports (2017)
|
使用TBR4100测量相关菌株的氧气(O₂)消耗率,研究OxyR缺失影响沙雷菌(Shewanella oneidensis)的氧气呼吸效率。 |
参考文献
1. Lee, D. S. & Kim, J. E. PDI-mediated S-nitrosylation of DRP1 facilitates DRP1-S616 phosphorylation and mitochondrial fission in CA1 neurons. Cell Death Dis 9, 869, doi:10.1038/s41419-018-0910-5 (2018).
2. Park, J. H. et al. Activation of ATM/Akt/CREB/eNOS Signaling Axis by Aphidicolin Increases NO Production and Vessel Relaxation in Endothelial Cells and Rat Aortas. Biomol Ther (Seoul) 28, 549-560, doi:10.4062/biomolther.2020.007 (2020).
3. Pokrzywinski, K. L., Tilney, C. L., Warner, M. E. & Coyne, K. J. Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA. Sci Rep 7, 45102, doi:10.1038/srep45102 (2017).
4. da Silva, C. J., Batista Fontes, E. P. & Modolo, L. V. Salinity-induced accumulation of endogenous H(2)S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana. Plant Sci 256, 148-159, doi:10.1016/j.plantsci.2016.12.011 (2017).
5. Olson, K. R. et al. Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biol 12, 325-339, doi:10.1016/j.redox.2017.02.021 (2017).
6. Wan, F., Shi, M. & Gao, H. Loss of OxyR reduces efficacy of oxygen respiration in Shewanella oneidensis. Sci Rep 7, 42609, doi:10.1038/srep42609 (2017).
7. Alimoradi, H., Barzegar-Fallah, A., Sammut, I. A., Greish, K. & Giles, G. I. Encapsulation of tDodSNO generates a photoactivated nitric oxide releasing nanoparticle for localized control of vasodilation and vascular hyperpermeability. Free Radic Biol Med 130, 297-305, doi:10.1016/j.freeradbiomed.2018.10.433 (2019).